

International Round Table on Thermal Plasmas for Industrial Applications

Challenges and opportunities for industrial applications of thermal plasma technology.

3 - 7 Mars, 2014 Palmeraie Hotels & Resorts Les Jardins de la Palmeraie Marrakech, Morocco

Plasma source Technology	Power range	Application	Performance criteria
Hot cathode dc torch	30kW to 100kW	R&D and plasma spaying	 High specific enthalpy Robotic manipulation Ease of powder or liquid injection
Segmented dc torch	10kW to 100kW	R&D, material synthesis, and plasma spraying	Compact Versatile
Segmented dc torch	500kW to 60MW	Aerospace	Supersonic flow Short test duration
Cold electrode dc torch	200kW to 8MW	Chemical synthesis, metallurgy and treatment of toxic and waste	Low energy density High energy efficiency Electrode life
Transferred arc	10 to 20kW	Surface coating and hard facing	Compact design Robotic control
Transferred arc	1 to 30MW	Tandish heating, Vacuum melting and waste treatment	Energy efficiency Electrode life
R.F. induction plasma	1-5kW	ICP spectrochemical analysis	 Stability and high purity of the discharge Minimal plasma gas flow rate
R.F. induction plasma	10 to 200kW	Materials synthesis and processing	High purity of the plasma Range of plasma gas composition Central injection of particles, liquids or gases with long residence time

Plasma Coatings (18/19)

ZADE

<u>Modelling</u> can take into account all the main arc and weld pool phenomena

- Three-dimensional
- Two way coupling between arc, electrode and weld pool
- Arc motion
- Complex geometries
- Weld-pool surface deformation and flow of liquid metal
- Effect of droplets
- Metal vapor
- Mixing of droplets with weld pool

→ Using arc welding models 'on the factory floor'

Arc Welding (9/19)

Session 6 : Plasma Waste Treatment	Jaco van der Walt				
Very small plasma gasification system, Jaco van	der Walt, NECSA, SA				
 Tetronics' – High Specific Value Materials Recovery in Modern Circular Business Models Employing Tetronics' Plasma Technology, D.E. Deegan, Tetronics UK 					
Waste Treatment (1/9)	Zica				

Comparison of waste treatment options						
	Pyrolysis	Conventional gasification	Plasma arc gasification	Incineration		
Operating temp (°C)	650 - 1200	800 - 1500	4 – 7000	540 - 1200		
Efficiency (%)	57	68	81	54		
Net energy to grid (kWh/t)	571	685	861	544		
Capital cost (\$ million)	87	80	101	115		
Operating cost (\$ million/a)	ng cost 7.2 6.8 n/a)		7.4	8.2		
Waste Treatment (3/9)						

Industr	ial scale	plasma waste treatment plants
Company	Location	Description
Plasco Hera JV Plasco Energy Group	Castellgali, Spain Trail Road, Ottawa, Canada	5 t/d research pilot plant. MSW, alternative (unspecified) feedstocks 100 t/d demonstration plant processes post-recycled MSW, producing 1MWh/t
Phoenix Solutions Corporation (PSC)	Minneapolis, MN, USA	Plasma equipment supplier. Furnace design and manufacture.
Enersol Technologies Inc	Springfield, Virginia, USA	Plasma Enhanced Gasification System (PEGS TM): Petroleum coke, Coal waste, Biomass, MSW.
Bellwether Gasification Technologies Ltd	Hennigsdorf, near Berlin, Germany	IMG (Integrated Multifuel Gasification). Plasma equipment supplied by Phoenix (PSC). Turnkey plant under construction in Brasov, (100 000 t/a), Turnkey plant, (90 000 t/a) for Vaslui, Basic and detail engineering for 60 000 t/a MSW gasification plant, Bals, Romania.
Air Products/ AlterNRG/ Westinghouse	Teesside, UK	1000 t/d MSW-to-energy. Westinghouse plasma gasifier and torches. Commissioning: 2014
AlterNRG	Wuhan, Hubei, China	150 t/d biomass gasifier. Electricity and FT liquid fuels. Commissioning late 2012
AlterNRG	Mihama-Mikata, Japan	20 t/d MSW + 4 t/d sewage sludge. Commissioned 2002. Produces heat for feedstock drying.
Waste Treatme	nt (4/9)	Zpa

Company	Location	Description			
AlterNRG	Westinghouse	48 t/d plasma gasification demonstration and test facility. In			
	Plasma Centre,	operation since 1984. More than 100 different feed stocks tested.			
	Madison, PA,	Syngas produced for various applications (e.g. ethanol production,			
	USA.	Coskata bio-fermenter).			
PEAT International	Kaohsiung City,	Medical and hazardous wastes			
(PTDR)	Taiwan	MSW gasification			
<u> </u>	Columbia ridge				
InEnTech (PEM)	Landfill,	Processing of MSW, industrial, medical and hazardous waste			
	Arlington,				
PyroGenesis		Mobile/shipboard systems for general waste destruction.			
ADD/Tataaaia	Test Facility:	"Gas plasma" process: fluidised-bed gasification of reuse derived			
APP/ letronix	Swindon, UK	fuel (RDF). Tetronix supplies plasma torches and technology.			
Europlasma/CHO	Morcenx, France	~51 500 t/a. Sorted/recycled. Generates 12 MWe +18 MWth as hot			
Power		water. Crude syngas "polished" in plasma reactor.			
Solena Fuels	London, UK	500 000 t/a MSW to 73 ML of jet fuel, 49 ML of naphtha/a, 40 MWe			
Millenium	Prague, Czech				
Technologies	Republic	Plasma gasification systems and engineering services (5 t/h, 20 t/h)			
-	G G.	Biomass-to-liquid fuels. Silvagas and ClearFuels gasifiers, Fischer-			
Rentech	Commerce City,	Tropsch (F-T) technology. >2 000 h operation; Rentech F-T			
	Colorado	>13 000h operation; Integrated process >1 000 h operation			

Economic viability					
I.J. van der Walt, J.T. Nel, D. Glasser, D. Hildebrandt, L. Ngubevana, An Economic Evaluation For Small Scale Thermal Plasma Waste-to-energy Systems, ISPC 21, Cairns, Australia, 4 –9 Aug, 2013.					
Waste type	Current waste treatment cost (\$/kg)	Plant cost for 1 tpd (\$`000)	IRR for 1 tpd (%)	Products	Min viable size (tpd)
Organic waste	0	400	0	Electricity, fuel	10
Municipal waste	0.01	400	0	Electricity, fuel	7
Tyre waste	0.012	500	0	Electricity, fuel	6
Hazardous waste	3	500	158	Electricity	0.2
Medical waste	4	500	207	Electricity, steam, hot water	0.1
Waste Treatment (8/9)					

Nano-particle Synthesis (4/4)