

Réflexion actions AAE 2007 en CFD pour l'arc électrique

F. Camy-Peyret Réunion AAE du 20 Juin 2007

Tour d'horizon des pratiques

- Petites équipes dédiées ou orientées modèles CFD pour l'arc électrique => réseau virtuel estimé ~> 20 pers.an au sein de l'AAE
- Souvent historique de développement de codes maison
- De plus en plus systématiquement adossé à un code commercial
- Cas particulier Code_Saturne
- Transferts & collaborations recherche / industrie
- Relations éditeurs avec succès variables

Objectifs CFD Arc

Académiques:

- Plate-forme de développement de modèles
- Préparer les expériences
- Répondre aux contrats de collaboration industriels

Industriels:

- R&D développement des appareils et équipements
- Expertise des incidents
- Etudes fondamentales sur paramètres
- Réduction des essais en laboratoire
- Compréhension des phénomènes

Outils connus (non exhaustif)

- Plateformes connues « sous arc »
 - Codes commerciaux : FLUENT, CFX (Industriels et académiques, souvent sur incitation des 1^{ers})
 - Codes maison 2D (disjoncteurs et torches) utilisés
 - Codes libres: Code_Saturne
 - Inconnues: StarCD, OpenFoam, autres ?
- Avancement et efforts variables

Besoins vs plate-forme

- Robustesse
- User friendly, Adaptation au monde industriel (GUI), interfaçage dans la chaine de conception
- Maintenabilité, Portabilité
- Validation au niveau algorithmique (compressibilité, gaz réel, maillage mobile) => vérification ?
- Support
- Ouverture sur modules utilisateurs, Open Source
- Résolution 2D/3D et rapidité résolution
- Coût (académiques mais aussi industriels)

1ère Cartographie

Thème	Statut actuel	Besoin / améliorations envisagées
Solver NS	VF implicite	-
Description du milieu / EOS et coefficients de transport	Fluide réel newtonien compressible Propriétés tabulées = f(T) ; f(T,P,%vapeur)	- Propriétés tabulées =f(P,T) (autre que rho)
Espèces et approche thermo	Mono-espèce / LTE Multi-espèces (composés) LTE avec lois de mélange	- Multi-espèces (composés) LTE avec lois de mélange Déséquilibre chimique Déséquilibre thermique (aux électrodes)
Turbulence	Aucun 1 équation / longueur de mélange	Choix de modèle 2 équations bas Reynolds Etudes de sensibilité Etudes de validation de modèles
EMAG	Potentiel vecteur	-
Rayonnement	Emission nette P1	- P1 Prise en compte de la diffusion
Géométries	struct 2D et 3D unstruct 2D et 3D	3D unstruct
Conditions aux limites aux électrodes	J ou potentiel imposé	Couplage thermo et EMAG électrode pour déplacement et transferts

Propositions

Indépendamment d'une action financée AAE

- Groupe CFD (faire échanger plus le réseau) avec meeting avant une (des) réunions AAE
- Document de synthèse de l'état de l'art (FCP) par code / modèle / membre (?)
- Tirer au clair le bilan FLUENT côté Air Liquide Schneider Areva
- Lettre de l'AAE aux éditeurs (FLUENT, CD-ADAPCO, EDF, etc...) pour lister les besoins
- Partage de cas tests ou de benchmarks entre membres (publics ou restreints ?) : il faut clairement définir le but et l'utilité de tels benchs déjà faits par les uns ou les autres
- Envoi de cas tests aux éditeurs
- Etat des lieux à l'international

Sujets pour une action financée AAE (post-doc ou master)

- ✓ Benchmark de codes sur cas tests arc électrique : difficulté est l'accès aux codes
- Industrialisation de modèle d'arc dans Code_Saturne => faisabilité aux différentes applications non déjà testées, cas tests, test faisabilité compressible
- Mise en œuvre d'une structure de base de données pour les propriétés thermo et les coefficients de transport pour les plasmas dans un format à définir permettant leur utilisation par différent codes (CAPE-OPEN ?) : peut-être faire un état des lieux avant
- Le problème de l'extinction coupure est crucial : 2 pbs restent importants : la turbulence et le déséquilibre ; que peut-on attendre comme améliorations ou nouvelles approches ? quelles applications disjoncteurs ?
- Modèles de turbulence pour l'arc électrique : état de l'art, cas de validation et études de sensibilité
- Etude de la propagation d'erreurs entre le choix des propriétés et les résultats CFD