

Novi Sad — Serbia September, 2-7, 2018

Volume 1

Serbian Academy of Sciences and Arts

Novi Sad — Serbia September, 2-7, 2018

Volume 2

PROCEEDINGS OF THE XXIIND INTERNATIONAL CONFERENCE ON GAS DISCHARGES AND THEIR APPLICATIONS

- VOLUME 2 -

2nd - 7th September 2018 Novi Sad, SERBIA

Serbian Academy of Sciences and Arts &

Institute of Physics, University of Belgrade

Editors: Prof. Zoran Lj. Petrović

Dr. Nevena Puač

Dr. Saša Dujko

Dr. Nikola Škoro

EXECUTIVE MANAGMENT COMMITTEE

Dr. J.E. Jones, Chair

Prof. G.R. Jones

Prof. J.W. Spencer

Prof. K Hidaka

Dr. A.B. Murphy

Prof. D. Hong

Dr. P. Robin-Jouan

INTERNATIONAL SCIENTIFIC COMMITTEE

Dr. J.-M. Bauchire, France

Prof. Yann Cressault, France

Prof. C.M. Franck, Switzerland

Prof. K. Hidaka, Japan

Prof. G.R. Jones, UK

Dr. A.B. Murphy, Australia

Prof. G.J. Pietsch, Germany

Prof. Ph. Robin-Jouan, France

Prof. Kohki Satoh, Japan

Prof. J.W. Spencer, UK

Dr. T. Teich, Switzerland

Prof. J. -Y. Trepanier, Canada

Prof. Y. Wu, China

Dr. J. L. Walsh, UK

Dr. J.-P. Borra, France

Prof. M. Farzaneh, Canada

Prof. A. Haddad, UK

Prof. D. Hong, France

Dr. J.E. Jones, UK

Prof. Z. Lj. Petrović, Serbia

Prof. V. Rakov, USA

Prof. A. Robledo-Martinez, Mexico

Dr. M. Seeger, Switzerland

Dr. S. Stangherlin, Switzerland

Dr. Igor Timoshkin, UK

Prof. K.-D. Weltmann, Germany

Dr. J. D. Yan, UK

LOCAL ORGANIZING COMMITTEE

Prof. Zoran Lj. Petrović, Chair Dr. Saša Dujko, Co-Chair

Dr. Danko Bošnjaković

Dr. Dragana Marić

Kosta Spasić

Marija Puač

Nenad Selaković

Ilija Simonović

Dr. Nevena Puač, Co-Chair Dr. Nikola Škoro, Secretary

Prof. Bratislav Obradović

Dr. Gordana Malović

Jelena Sivoš

Dejan Maletić

Jasmina Atić

Vladan Simić

Panacomp Wonderland Travel

FOREWORD

The International Conference on Gas Discharges and Their Applications is organized in the city of Novi Sad. It is the second largest city in Serbia and has a long tradition of excellent science and culture. It is designated to be the European Capital of Culture in the year 2021, the first from a candidate country.

This conference is intended for scientists and engineers who deal with gas discharges and related phenomena. The special emphasis is on ideas, construction and implementation of devices for a wide range of possible applications. This field has seen a major growth in the past thirty years, mainly due to its involvement in some of the most productive and modern technologies. The conference is organized by the Serbian Academy of Sciences and Arts and the Institute of Physics of the University of Belgrade.

This book contains 169 papers that have been reviewed by referees selected by the Local Organizing Committee. In addition, this conference will include thematic workshops where certain authors have been invited to present progress reports of their research. All those papers will be presented orally in two parallel sessions according to the tradition of the conference. Last, but certainly not least, the book contains papers associated with 10 invited plenary lectures that will be presented in joint sessions. The present version of the proceedings is published beforehand and is thus only a preliminary version subject to changes in the last minute due to possible absences of some authors. The final and therefore the official version of the proceedings will be presented on the web site of the conference http://gd2018.ipb.ac.rs/ and will be available to the attendees on a memory card.

The Local Organizing Committee wishes to thank the Executive Management Committee and the International Scientific Committee for their support and advice. The conference received some financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia and from the Serbian Academy of Sciences and Arts as well as from the funds of the Centre for Non-equilibrium Processes of the Institute of Physics, University of Belgrade. All members of this centre have participated to some degree in the organization of the conference.

Finally, our special thanks go to the participants of this conference who have travelled from different continents, from far and wide and have invested their efforts in maintaining this conference and its tradition. We have tried to honour that tradition for the benefit of future organizers and future generations of scientists working in the field of gas discharges.

On Behalf of the Local Organizing Committee, the Editors

Prof Zoran Lj. Petrović (Co-chariman)

Dr Nevena Puač (Co-chariman)

Dr Saša Dujko (Co-chariman)

Dr Nikola Škoro (Secretary)

TOPICS

Volume 1

- A. Arcs
- B. Corona, Barrier and Surface Discharges
- C. Glows and Breakdown

Volume 2

- D. High Pressure Plasmas and Applications
- E. Low Pressure Plasmas and Applications
- F. Environmental and Medical Applications
- G. Pulsed-Power Applications
- H. Light Sources
- J. Lightning
- K. Test Techniques and Diagnostics
- L. Fundamental Processes and Cross-Sections
- M. Emerging and Topical Applications of Gas Discharges
- N. Measurement Techniques

Table of Contents – VOLUME 1

<u>INVI</u>	TED LECTURES	
IL1	Numerical and experimental study of arc fault in aeronautical conditions J.M. Bauchire, M. Lisnyak, H. Rabat, M. Chnani, A. Bigand, C. Espinosa	1
IL2	Nonequilibrium kinetics in CO2 plasmas T. Silva, M. Grofulović, L. Terraz, P. Ogloblina, C. D. Pintassilgo and V. Guerra	5
IL3	Low temperature plasma surface interactions for their future basic researches and applications M. Hori, M. Ito and K. Ishikawa	9
IL4	Controlling plasma surface interactions when challenged by statistics and equilibrium J. Kruszelnicki, S. Huang, C. Huard, C. Qu, A. M. Lietz, S. Mohades, G. Parsey and M. J. Kushner	13
IL5	Basic data calculation and fundamental experiment for SF6-alternative gases X. Li, X. Guo, B. Zhang and, J. Xiong	17
IL6	The verification of a computational model of arc motion using an arc imaging system J.W. McBride	27
IL7	Simulation of subnanosecond discharges in high-pressure gases N. Yu. Babaeva and G. V. Naidis	31
IL8	Laser spectroscopy on plasma liquid systems S. Reuter, B. Goldberg, A. Dogariu, Y. Zhang and R. Miles	35
IL9	Electric breakdown in high voltage gas circuit breakers M. Seeger	39
IL10	Low temperature plasmas: fundamental and biological applications M. Yousfi	43
<u>ORA</u>	L CONTRIBUTIONS	
A. Ar	res	
A1	The Effect of Lorentz Force on Nozzle-Arc Characteristics over a range of Currents Sumedh Pawar and Atul Sharma	47
A2	Calculation Model Development of PTFE Nozzle Ablated Mass and Pressure Changes in High-Voltage Circuit Breaker Motohiro Sato, K. Horinouchi, S. Hiza, Y. Nakamura, Y. Yoshitomo, Y. Shimizu and Y. Yokomizu	51
A3	Investigations on the Switching Capability of Medium Voltage Load Break Switches in an Alternative Quenching Gas Marvin Bendig, Nicolas Götte, Thomas Krampert, Armin Schnettler, Achim Kalter and Martin Schaak	55

A4	A Method to Determine the Rate of the Dielectric Recovery in a Medium	59
	Voltage Load Break Switch with a Free Burning Switching Arc	
	Marvin Bendig, Nicolas Götte, Thomas Krampert, Armin Schnettler, Achim	
	Kalter, and Martin Schaak	(2)
A5	Comparison of calculated transport properties with measurements in a wide	63
	pressure range	
	Tobias Runge, Steffen Franke, Sergey Gortschakow, Ralf Methling and	
A.C	Michael Kurrat Determination of the Voltage Recovery Process for VSC HVDC Systems	67
A6	after transient Single-Pole to Ground Faults	07
	Maximilian Stumpe, Armin Schnettler and Ankur Garg	
A7	Simulation studies of high-intensity arcs for switching applications	71
AI	Chayma Mohsni, Margarita Baeva, Sergey Gortschakow, Steffen Franke,	/1
	Kamel Charrada and Zouhour Araoud	
A8	Study of simple substituted test method for evaluating protective ability of	75
110	face shield against hazards of electric arcs	70
	Shizue Furukawa, Tomo Tadokoro and Michiharu Ichikawa	
A9	Enhanced Low Voltage DC Switching Using a Permanent a Magnet	79
	John Shea	
A10	Optical Emission Spectroscopy of Ablation-Dominated Arcs during High-	83
	Current Phase and around Current Zero	
	Klaus-Dieter Weltmann, Ralf Methling, Nicolas Götte, Sebastian Wetzeler	
	and Dirk Uhrlandt	
A11	Evaporation-determined model for cathodic heating in GMA welding	87
	Oleg Mokrov, Marek Simon, Alexander Schiebahn and Uwe Reisgen	
A12	Arc Voltage Measurements of Ultrahigh-Pressure Nitrogen Arc in Cylindrical	91
	Tubes	
	Fahim Abid, Kaveh Niayesh, Nina Støa-Aanensen, Erik Jonsson and Magne	
	Runde	
A13	CFD simulation of a 3D featured electrical arc configuration in a 2D	95
	axisymmetrical simulation domain	
	Arkadz Petchanka and Frank Reichert	
A14	Experimental and simulative study on the influence of the electrical field	99
	distribution on the dielectric switching behavior of natural gases	
	Nicolas Götte, Marvin Bendig, Thomas Krampert, Paul Gregor Nikolic and Armin Schnettler	
A15		103
AIS	Last development results for 170kV circuit-breaker project using g3 gas Philippe Robin-Jouan, Jung Hae Eun, Oh Kwang Keun, Kim Young-Geun,	103
	Karim Bousoltane, Maxime Perret, Jean-Yves Trépanier and Sina Arabi	
A16	Investigation on the adjunction of O2 in g3 and its impact on dielectric and	107
1110	breaking in high voltage circuit breaker	107
	Karim Bousoltane, Yannick Kieffel, Louis Maksoud, Philippe Robin-Jouan,	
	Daniel Vigouroux, Philippe Teulet and Damien Vancell	
A17	Improvement of Fault Current Interrupting Arcing Horns for 77-kV Overhead	111
	Transmission Lines	
	Toshiya Ohtaka, Mikimasa Iwata, Hayato Awazu, Eiichi Nishikawa, Tatsuya	
	Nakanishi and Minoru Uehara	
A18	Characteristics of Contact Erosion at Arc Initiation in Low Voltage Switches	115
	Katsuki Hotta, Shinya Watanabe and Takashi Inaguchi	

A19	Numerical Study on CO2 Gas Circuit Breaker Using Semi-empirical Model for Radiative Energy Transfer	119
	Tomoyuki Yoshino, Amane Majima, Toshiyuki Uchii, Tadashi Mori and Takayasu Fujino	
A20	Relation between Dynamic Behaviors of Arc Jet and Input Power in a Non- Transferred DC Plasma Torch	123
A21	Kei Maeshima, Hikaru Matsumoto, Hiroki Saito and Takayasu Fujino Radiative Transfer Calculation of CO2 Thermal Plasma Using a Hybrid Plank-Rosseland Mean Absorption Coefficient	127
A22	Shunsuke Kozu, Takayasu Fujino, Tomoyuki Yoshino and Tadashi Mori Configuring the Test Current of Internal Arc Tests to replace SF6 with Air in SF6-Insulated Power Equipment	131
A23	Masashi Kotari, Tomo Tadokoro, Shin-Ichi Tanaka and Mikimasa Iwata Comparison of the Arc Characteristics and Arc Quenching Capabilities Between CO2 and SF6 in High-voltage Gas Circuit Breakers	135
A24	Ze Guo, Xingwen Li and Li Chen Dielectric properties of C5F10O and its mixtures with CO2 at the elevated temperature	139
A25	Xiaoxue Guo, Jiayu Xiong and Xingwen Li Comparative Study on High-Current Arc Extinction Process under Air, CO2 and SF6 Gas Blasting Using Two-Dimensional Electron Density Visualisation System	143
	Yuki Inada, Hiroyuki Nagai, Kumada Akiko, Hisatoshi Ikeda, Hidaka Kunihiko, Tomoyuki Nakano, Yu Tabata, Yasunori Tanaka and Mitsuaki	
A26	Maeyama Radiation of a nozzle-stabilized, high-current arc in air: measurements and calculations	147
A27	Marley Becerra, Janne Nilsson and Steffen Franke Unified Transfer Matrix Evaluation of the Emission Current Density from Non-refractory Cathodes of Electric Arcs	151
A28	Margarita Baeva CFD Simulation of Multi-Component Flows in High Voltage Circuit Breaker Chambers	155
A29	Sina Arabi, Jean-Yves Trepanier, Ricardo Camarero, Phillippe Robin-Jouan, Patrick Guiavarch and Tianbo Zhou Measurement and simulation on pressure field in arc chamber of low voltage	159
	circuit breaker in different structures Yujie Wang, Lijun Wang, Dan Wang and Shenli Jia	
A30	Analysis of the mechanical effect of high current impulse discharge arc Jiaming Xiong, Lee Li, Hongyu Dai, Haibo Wu and Bin Yu	163
A31	Chemically Non-equilibrium State in SF6 Arc Plasmas due to Time Variation and Spatial Gradient in Temperature Yasunori Tanaka and Takanori Iijima	167
A32	Pressure dependence of optimized mean absorption coefficients Petr Kloc, Vladimir Aubrecht and Milada Bartlova	171
A33	Effects of Enclosure Wall Material Ablation on Arc's Voltage-Current- Characteristics Mario Muermann, Henrik Nordborg, Michael Schueller and Alexander	175
	Chusov	

A34	Research on Characteristics of Series Arc Fault under Mechanical Vibration Condition	179
125	Lizhi Liu, Fengyi Guo, Yanli Liu, Peilong Wang and Shaolei Wang	103
A35	Two-dimensional Temperature Distribution of Air Arc Migrating to Iron Arc Runner Taiga Nagata, Shigeyasu Matsuoka, Akiko Kumada, Kunihiko Hidaka, Shinya Watanabe and Kentaro Kokura	183
A36	Residual Current in Separation Process of Brush and Commutator Segment of Direct Current Motor Immersed in Ethanol Takashi Fukutsuka, Yasunobu Yokomizu, Kazuya Oshima and Hiromitsu Asai	187
A37	Effect of optimized / non-optimized spectral intervals used for Mean Absorption Coefficients on the radiative transfer of clean air Narjisse Kabbaj, Yann Cressault and Philippe Teulet	191
A38	Low-voltage arc plasma simulation in 3D with contact opening process Jiawei Duan, Hao Sun, Mingzhe Rong, Yi Wu and Keyao Huang	195
A39	Motion Characteristics of H2-N2 Mixed Gas Arc under High Pressure with Magnetic Field Bowen Jia, Jianwen Wu and Yuan Jiang	199
A40	Analysis of arc parameters for Low voltage DC arc quenching process by using modified Mayr model Kazuho Hasegawa, Akihiro Tsusaka, Toshiro Matsumura, Kazuto Yukita, Yasuyuki Goto, Atsushi Miyamoto, Hiroyuki Ito and Yasunobu Yokomizu	203
A41	Systematic investigation on radiation modeling errors Roman Fuchs and Henrik Nordborg	207
A42	Comparison of different models to calculate the composition of a multi- temperatures plasma of SF6 Xavier Baumann, Yann Cressault, Philippe Teulet and Gabriel Vanhulle	211
A43	Numerical simulation of the radial temperature distribution dynamics in an air arc plasma at atmospheric pressure Alexei Merkushev, Jaroslav Triaskin and Artem Vasilev	215
A44	Simulation of impulse arc discharge Alexander Chusov, E. Rodikova, M. Murmann and R. Fuchs	219
A45	Research on the transient characteristic of VFTO based on the improved Vlastos reigniting model of SF6 gas discharge Zhining Yang, Xixiu Wu, Chaoqun Li and Wenlong Pang	223
A46	Investigation of C2 Swan Bands in Optical Emission and Absorption Spectroscopy of Ablation-Dominated Arcs Ralf Methling, Nicolas Götte, Sebastian Wetzeler, Dirk Uhrlandt and Klaus- Dieter Weltmann	227
A47	Influence of the power supply on the electrical arc behaviour Aurore Risacher, Loïc Hermette, Gaétan Chanaud and Nicolas Chadourne	231
A48	Rotary arc in load switch and its simulation using a three dimensional arc model Jing Qiang, Joseph Yan, Duanlei Yuan, J Humphries and J.W Spencer	235
A49	Effect of Applying Magnetic Field on Dynamic Behavior of Arc Jet Produced by A Non-transferred Direct-Current Plasma Torch Takayasu Fujino, Hikaru Matsumoto, Kei Maeshima and Hiroki Saito	239

A50	A coupled model of an LTE arc column and the cathode in high-pressure arc discharges	
	Diego Santos, Marina Lisnyak, Mario D. Cunha, Nelson A. Almeida and Mikhail S. Benilov	
	Wikilali S. Delillov	
B. Co	orona, Barrier and Surface Discharges	
B 1	Electro-hydrodynamics simulation of ozone production in a multi pins to plane corona discharge reactor	243
	Jean Philippe Sarrette, Olivier Ducasse and Olivier Eichwald	
B2	Study of charges deposited on dielectric by a surface DBD using 2D	247
	polarimetry technique coupled to discharge imaging measurement	
В3	Hervé Rabat, Fadi Zoubian and Dunpin Hong Development of a plasma source to enhance atmospheric pressure spatial	251
DJ	atomic layer deposition for silicon heterojunction solar cells application	231
	Fadi Zoubian, Hervé Rabat, Olivier Aubry, Nicolas Dumuis, Sebastien Dozias	
	and Dunpin Hong	
B4	Impact of N2O admixture in N2 on the characteristics of pulsed-driven DBDs	255
	at atmospheric pressure	
D.#	Hans Höft, Manfred Kettlitz, Markus M. Becker and Ronny Brandenburg	250
B5	Discharge Characteristics of Micrometer-scale Gap on Dielectrics upon Pulse	259
	Voltage Application Hideki Ueno, Naoki Tani, Atsushi Nishio and Sho Okada	
B6	Heat transfer analysis of capillary-DBD source	263
20	Kiriakos Sklias, Dimitrios Athanasopoulos, Policarpos Papadopoulos,	
	Panagiotis Svarnas, Kristaq Gazeli and Panayiotis Vafeas	
B8	Plasma Jet Simulation in Helium-Air Mixtures	271
	Farah Fawaz, Olivier Eichwald, Malika Benhenni and Mohammed Yousfi	
B9	3D Streamer Simulation in a Point to Plane Configuration	275
	Olivier Ducasse, Joseph Plewa and Olivier Eichwald	
B10	The influence of high-speed airflow on characteristics of nanosecond sliding	279
	surface discharge	
D11	Irina Mursenkova, Alexander Kuznetsov, Anton Sazonov and I. Znamenskaya Surface Flashover Characteristics of Insulator in SF6/CF4 Gas Mixture with	202
B11	DC Voltage	283
	Xiaolong Li, Xin Lin, Miao Wen, Zhixuan Zhai and Mingzhi Yang	
B12	Filamentation of nanosecond surface barrier discharge at high pressures:	287
	physics and applications	207
	Sergey Shcherbanev, Nikolay Popov and Svetlana Starikovskaia	
B13	Influence of Metallic Particles on the Insulating Properties of Basin-Type	291
	Insulator	
	Miao Wen, Xin Lin, Xiaolong Li, Fan Ge, Wenjie Wang and Yaxiang Wang	

C. Glows and Breakdown

C1	ICCD-imaging of a plasma glow during the prebreakdown stage of nanosecond discharges in different gases at both polarities of voltage Victor Tarasenko, Dmitry Beloplotov, Mikhail Lomaev and Dmitry Sorokin	295
C2	Flashover of metallic-particle polluted insulators in compressed SF6 under different voltage waveforms	299
C3	Valeria Teppati, Martin Seeger, Torsten Votteler and Angelos Garyfallos Experimental Characterization and Modeling of the Dielectric Breakdown Strength for Technical Surfaces in F-gas Free High-Voltage Switchgear Svetlana Gossmann, Bernhard Lutz, Andreas Geisler and Paul Gregor Nikolic	303
C4	Objectives and setup to study electrical breakdown in CO2 as an alternative to SF6	307
C5	Siddharth Kumar and Tom Huiskamp Breakdown phenomenon across mm-scale gap with thin cavity Hiroyuki Iwabuchi, Yuya Nakaso and Tsutomu Oyama	311
C6	On the Luminosity of a Field-Theoretic Model of Ball Lightning James Jones	315
C7	A particle simulation of subnanosecond breakdown in nitrogen filled gap Dan Wang and Lijun Wang	319
C8	Numerical modelling of pre-breakdown discharges in a wide range of conditions Nuno G. C. Ferreira, Diego Santos, Pedro G. C. Almeida, George V. Naidis and Mikhail S. Benilov	323
C9	Discharges in alcohol vapours at low pressures Jelena Sivoš, Nikola Škoro, Dragana Marić, Gordana Malović and Zoran Lj. Petrović	327
C10	Pulsed electrical discharge in water: from propagation modes to physical mechanisms Cathy Rond, Jean-Michel Desse, Nicolas Fagnon, Xavier Aubert, Mine Er, Arlette Vega and Xavier Duten	331
C11	Modeling of radio-frequency breakdown by a Monte Carlo technique Marija Puač and Zoran Lj. Petrović	335
C12	Detection of breakdown in radiofrequency fields Jana Petrović, Antonije Djordjević, Marija Savić, Dragana Marić and Zoran Lj. Petrović	339
C13	SLF Interrupting Performance Evaluation of CO2 Gas Circuit Breaker Seung-Jae Lee, Hyun-Kyo Jung and Hong-Kyu Kim	343