

Etude d'un interrupteur moyenne tension Interaction arc / plastique

Projet AAE

Jean Quémeneur, Mathieu Masquère, Flavien Valensi, Yann Cressault & Philippe Teulet

Jérôme Douchin et Laure Trémas

Introduction

Motivations:

Caractériser expérimentalement l'interaction arc/plastique lors d'une phase de coupure d'un arc électrique dans un interrupteur moyenne tension

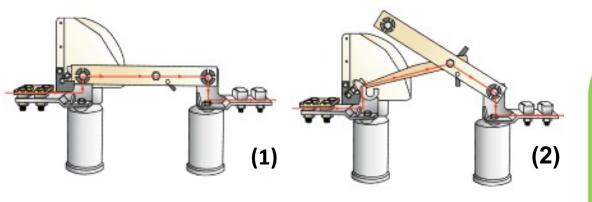
1^{er} objectif : Caractérisation du dispositif de coupure

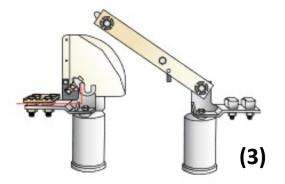
2ème **objectif**: Caractérisation du milieu air/vapeur et corrélation avec la performance en coupure/interruption du courant.

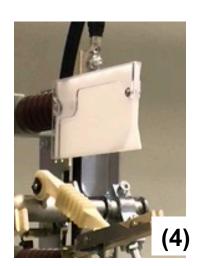
→ Sur quels paramètres pourrions nous jouer pour augmenter le nombre d'interruption sans maintenance.

Dispositif mis en place:

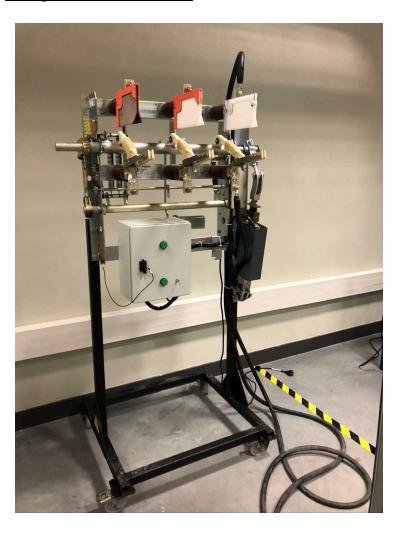
- Mise à disposition d'un interrupteur à air L-Tri de chez Schneider Electric


- Mise en place d'une alimentation permettant de générer une demi alternance de


courant de 2kA sous 1500V max.



Introduction


Présentation de l'interrupteur

- (1) <u>circuit fermé</u> le courant passe dans le couteau principal;
- (2) <u>phase d'ouverture</u> le courant passe dans le couteau secondaire
- (3) <u>circuit ouvert</u> le système doit garantir l'isolation

Introduction

Programme d'essai

4 matériaux (plaques)

Matériaux

UROCHEM 171 (UF – Formaldeyde)

BASF Ultramid A3X1G5 (PA66 GF25FR)

POM homopolymère - Delrin

PTFE

- Onde de courant (630A RMS)
- Etude sur 1 seule phase
- 10 tirs consécutifs pour chaque matériaux

Plan d'expérience

Matériaux

UROCHEM 171 (UF – Formaldéhyde)

BASF Ultramid A3X1G5 (PA66 GF25FR)

POM homopolymère - Delrin

PTFE

Mesures électriques

Tension, courant, puissance et énergie

Pesées

•

Masse ablatée, taux d'érosion

Imagerie rapide

Apparition de l'arc, vitesse d'ouverture Allongement de l'arc et ablation

Spectroscopie

Espèces présentes Principales propriétés du milieu

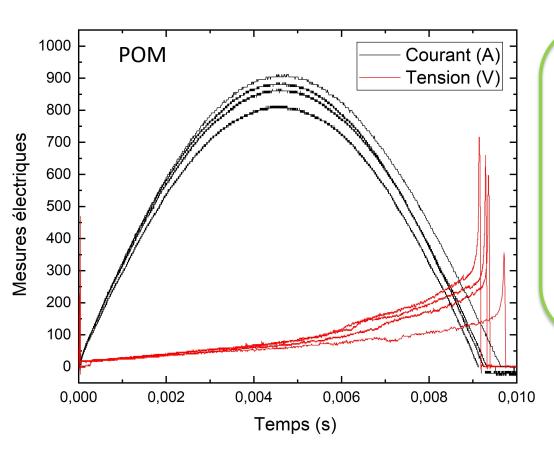
Mise en place du dispositif

→ Synchronisation de l'ouverture du couteau avec le départ de l'onde

→ Première étape :

Les premières séries de mesures ont montré un délai variable entre l'instant où est envoyé la demande d'ouverture et l'ouverture du couteau secondaire.

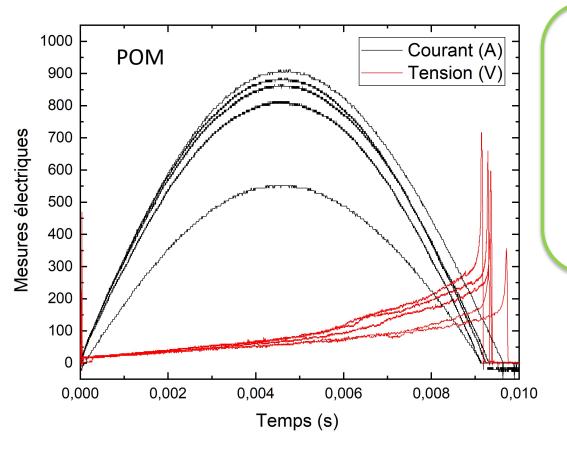
→ Seconde étape :


- Pour ajuster au mieux le départ de l'onde avec l'ouverture du couteau, un optocoupleur a été rajouté sur l'un des couteaux primaires.
- L'incertitude entre cet instant et l'ouverture du couteau secondaire passe de 2,8ms à 0,3ms

Mesures électriques

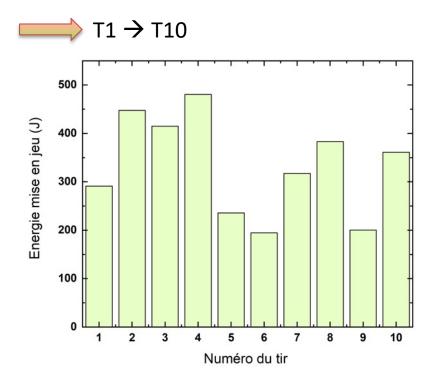
Conditions opératoires:

- POM homopolymère Delrin
- Onde 630A RMS


- → Pour une même tension de charge, très légère dispersion sur l'amplitude de l'onde de courant résultante.
- → t < 4ms : Faible écart de la tension
- → t > 4ms : Variation de U_{ARC} plus marquée
- → A confronter avec l'imagerie rapide

Mesures électriques

Conditions opératoires:


- POM homopolymère Delrin
- Onde 630A RMS

- → Au cours de la série, nous avons pu obtenir quelques ratés (dépôt de suies,...)
- → Comparaison et discussion des mesures non pas pour une valeur de courant mais en terme d'énergie mise en jeu lors de la série de tirs

POM-C

Les tirs 6 et 9 correspondent à des tirs où nous avons eu une onde d'amplitude réduite.

Dispersion des mesures réduite au max (amélioration synchronisation onde/départ couteau)

Energie Moyenne/tir (J)

332 J

Energie cumulée (10tirs) (J)

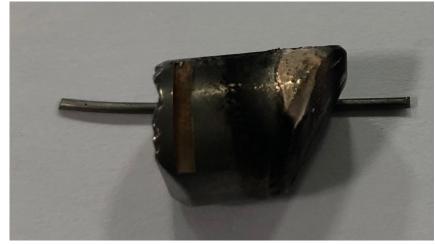
3326 J

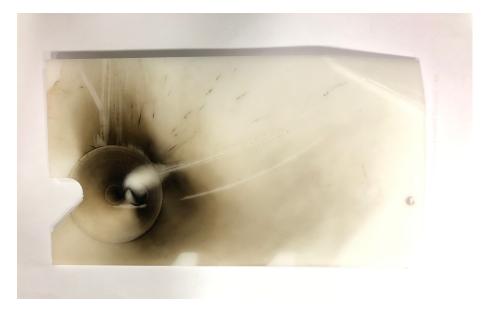
Ecart Type (J) 102 J

	Pion	Couteau	Plaque G	Plaque D
Ablation (mg):	3,4	-133	-55	-51
Taux (µg/J)	1,02	-40	-16	-15

Erosion marquée du couteau

Erosion plus faible des parois


30 juin 2021



Pesées / Ablation

POM-C (POM homopolymère – Delrin) – 10 tirs

POM-C (POM homopolymère – Delrin) – 10 tirs

- → Faible ablation des parois plastiques.
- → Mesures effectuées sur 1 demi alternance de courant
- → Ablation localisée autour du pion
 - Confrontation de ces résultats avec l'imagerie rapide

Choix du positionnement de la caméra

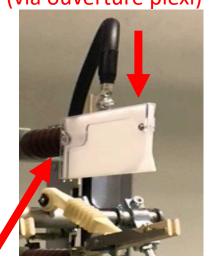
Objectifs:

- → Visualisation de la décharge
- → Expansion de l'arc
- → Imagerie / filtre interférentiel analyse temporelle de l'ablation

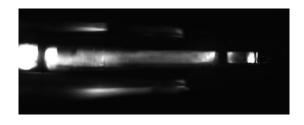
Position arrière (via ouverture arrière plexi)

Configurations opératoires (imagerie rapide):

- Densité Neutre ND300
- Filtre H_{α} : bande passante centrée sur la raie hydrogène + ND200 (λ = 656 nm $\Delta\lambda$ = 1nm)
- Filtre F: bande passante centrée sur une raie du fluor + ND200 (λ = 687 nm $\Delta\lambda$ = 4nm)


Position supérieure

(via ouverture plexi)


Choix du positionnement de la caméra

Position supérieure (via ouverture plexi)

Position
arrière
(via ouverture
arrière plexi)

Position supérieure (via fenêtre plexi)

Avantages

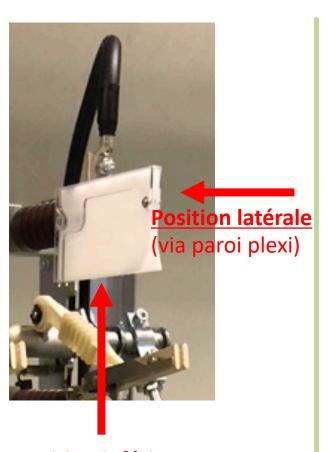
Proximité de l'arc

Inconvénients

- Cadrage difficile: il faut suspendre la caméra
- Plexiglas transparent qui diffuse la lumière. Perte de netteté

Position arrière (via fenêtre plexi)

Avantages


 Vue de derrière légère contreplongée. Cette vue permet d'avoir une vue sur la phase d'amorçage.

Inconvénients

- Cadrage bien trop difficile
- Angle de visé et plexi

Choix du positionnement de la caméra

<u>Position inférieure</u> (visée entre les deux plaques)

<u>Position latérale</u> (via fenêtre plexi)

Avantages:

- Mouvement du mécanique bien visible
- Mouvement de l'arc dans sa globalité

Inconvénients:

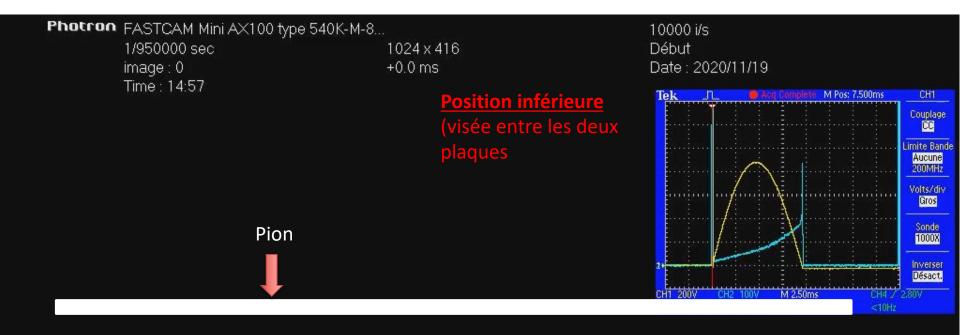
 Plaque transparente (plexi) : intrusif

Position inférieure (visée entre les deux plaques)

Avantages

- Vue directe sur la décharge
- Bon positionnement de la caméra pour visualisation le passage du couteau sur le pion

Inconvénients


- Mouvement du mécanisme
- Couteau qui masque les premiers instants

POM-C (POM homopolymère – Delrin)

→ Caméra rapide Photron AX100 (10000 ima/s)

→ Densité Neutre : ND300

Longueur d'arc, Vitesse d'allongement...

Pour le POM : L_{max} = 20 mm et v= 4,5m/s

Photron FASTCAM Mini AX100 type 540K-M-8.

1/400000 sec image: 10 Time: 17:02

1024 x 416 +1.0 ms

10000 i/s Début

Date: 2020/10/15

Imagerie rapide

- 10000 im/s
- Filtre ND

Photron FASTCAM Mini AX100 type 540K-M-8..

1/100000 sec image: 10

Time: 15:52

1024 x 416 $+1.0 \, \mathrm{ms}$

10000 i/s Début Date: 2020/10/15

Imagerie rapide

- 10000 im/s
- Filtre H_{alpha}

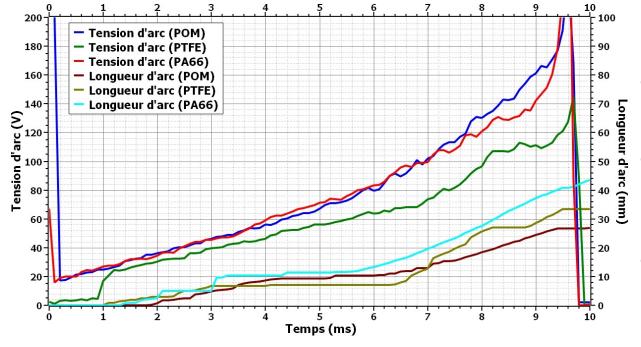
POM-C

Comparaison Imagerie

- Pas de différence notable entre les films pour différents filtres
- On aurait pu s'attendre à une zone plus lumineuse ou contrastée au proche voisinage du pion.
- Hydrogène choix non judicieux (milieu Air)
- A comparer PTFE / Filtre F
- Mesures spectroscopiques

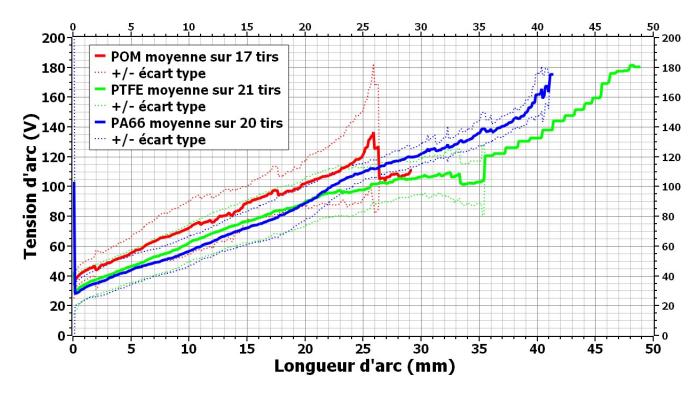
Conclusion POM

POM-C


- → Prise en main et réglages synchronisations du départ de l'onde vs mécanisme.
- → Bonne reproductibilité des tirs, malgré quelques ratés (onde de courant « réduites ») pouvant provenir de la présence de suies.
- → Pour le POM, le taux d'ablation des parois est proche de celle du couteau.
- → Très faible érosion du Pion.
- → Visualisation de l'allongement de l'arc au cours du temps.
- → Imagerie rapide + Filtre interférentiel semble apporter peu d'information supplémentaire dans notre cas sur la visualisation de l'ablation.

Matériaux	
POM –C	Mesures électriques
PTFE	Pesées
BASF Ultramid A3X1G5 (PA66 GF25FR)	Imagerie rapide

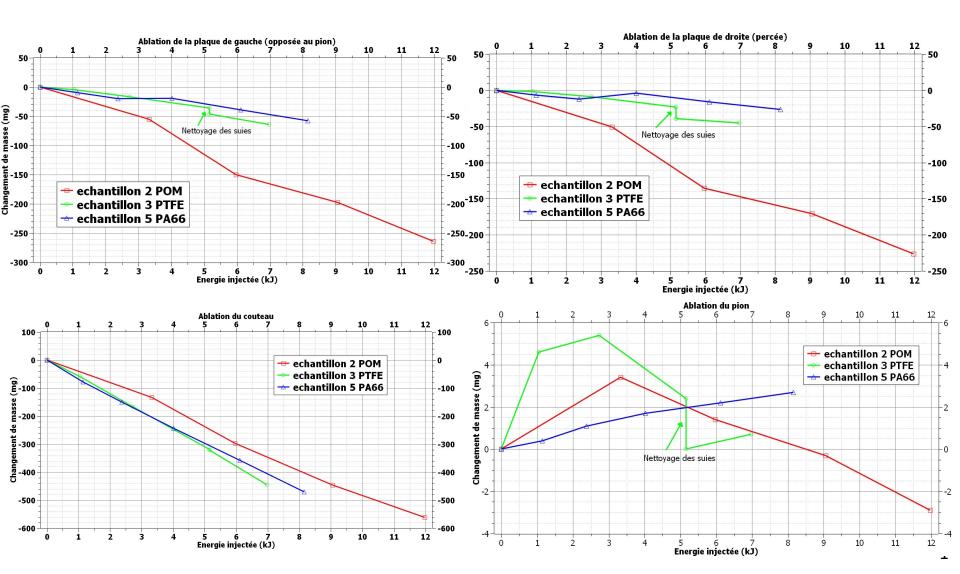
POM-C / PTFE / PA66



- → Longueurs d'arcs différentes suivant les matériaux.
- → Nature et géométrie des parois influent grandement sur la vitesse d'ouverture
- → Impact sur la tension

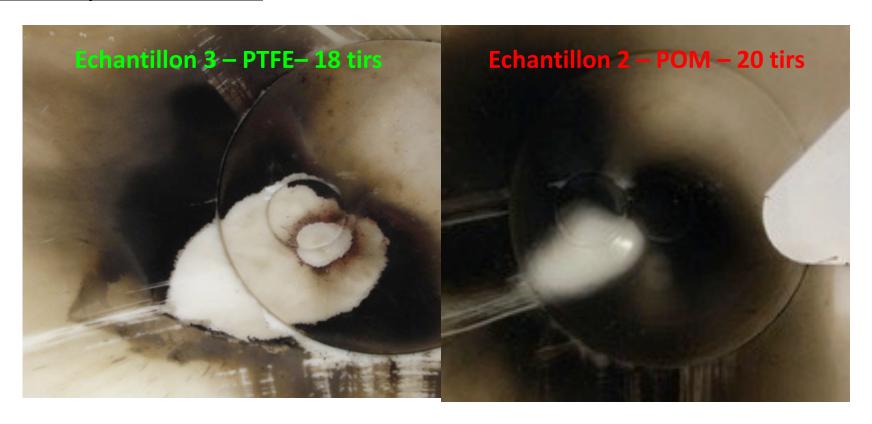
POM-C / PTFE / PA66

- → Corrélation des mesures électriques et des longueurs d'arcs obtenues par imagerie
- → Moyennage sur les séries de chaque matériaux.



→ Pour une longueur d'arc donnée, (Uarc)_{POM} est supérieure vs PTFE et PA66

Echantillon	n°2 POM	n°3 PTFE	n°5 BASF PA66
Nombre de tirs effectués	41	24	20
Energie totale cumulée	11,97 kJ	6,97 kJ	8,16 kJ
Energie moyenne par tir	291 J	290 J	400 J
Ecart type	89 J	95 J	17 J
Ablation plastique (taux)	490mg 41 μg/J	59 mg 8 μg/J	84 mg 10 μg/J
Ablation métallique (taux)	564 mg 47 μg/J	316 mg 45 μg/J	467 mg 57 μg/J
Remarque	Perçage en face du pion par ablation	Ouverture plus rapide (PTFE)	Ouverture plus rapide (jeu)



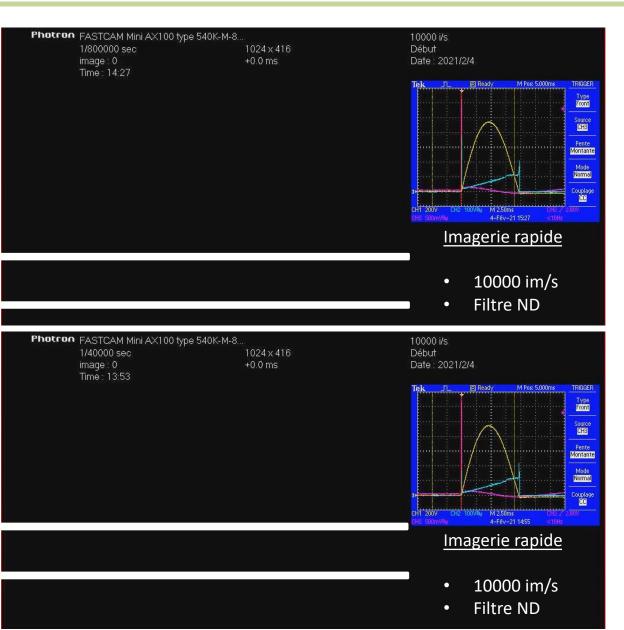
→ Ablation plus marquée dans le cas du POM vs PTFE et PA66

Ablation paroi POM / PTFE

- → Ablation des parois aux proches voisinages du pion
- → Présence de suies

POM: Endurance

tir 34



tir 41

- → Echantillon POM perçage de la plaque gauche (en vis à vis du pion)
- → Mesure sur 1 demi alternance de courant

Paroi PTFE

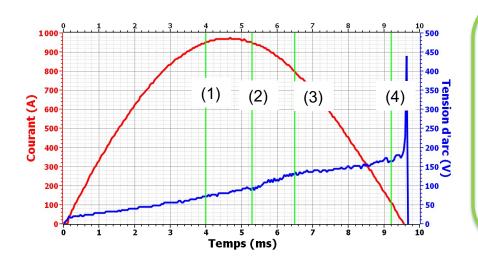
Comparaison Imagerie

- Identique au POM avec filtre Hα : Pas de différence notable entre les films pour différents filtres
- → On aurait pu s'attendre à une zone plus lumineuse ou contrastée au proche voisinage du pion.
- → Pas de vapeurs, bande spectrale inadaptée, Pb axe de visée ?
- Mesures spectroscopiques

Spectroscopie optique

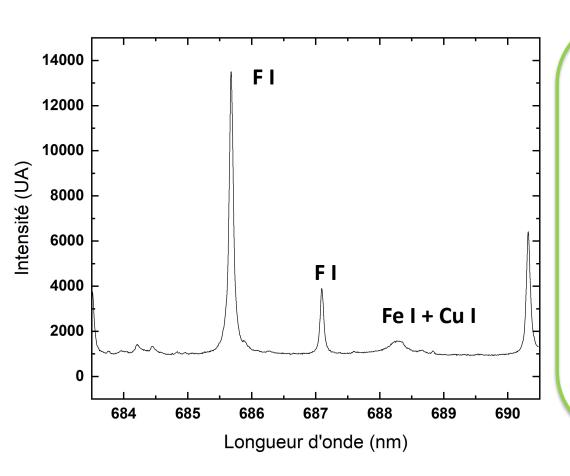
- → Imagerie rapide + Filtre interférentiel n'ont pas permis d'apporter une information supplémentaire.
- → Spectroscopie optique d'émission sur certaines zones ciblées du spectre


Conditions opératoires


- → Mesure via fibre optique + optique
- → Parois : POM ou PTFE
- → Visée au raz du pion (paroi plexi)
- → Résolution temporelle : 3000 fps
- → Espèces ciblées :
 - Fluor
 - Hydrogène
 - Fer, Cuivre

Spectroscopie

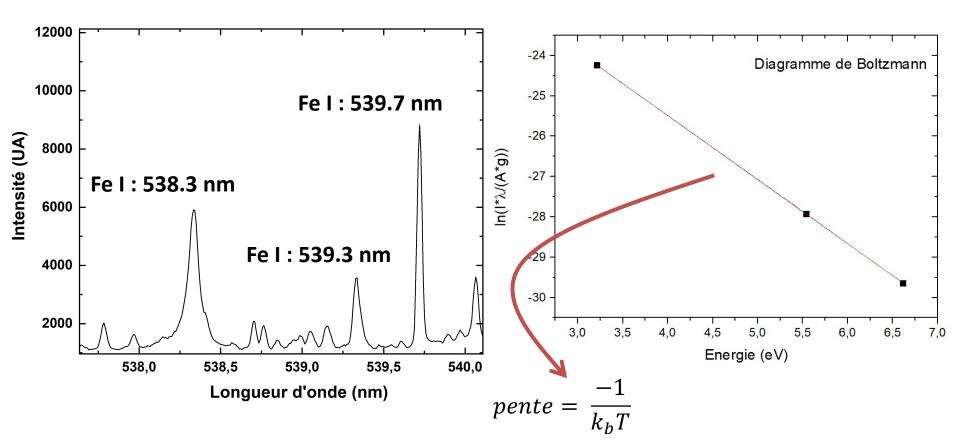
Imagerie au point de visée spectroscopique


Conditions opératoires

- → Point de visée au plus proche voisinage de l'apparition de l'arc.
- → Le point de mesure se situe dans la zone d'arc
- → Espèces visées : Fluor et hydrogène

Spectroscopie

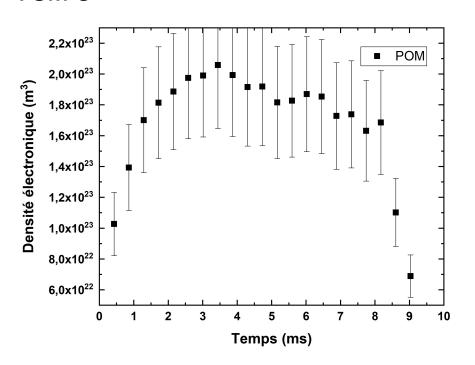
Raie du Fluor

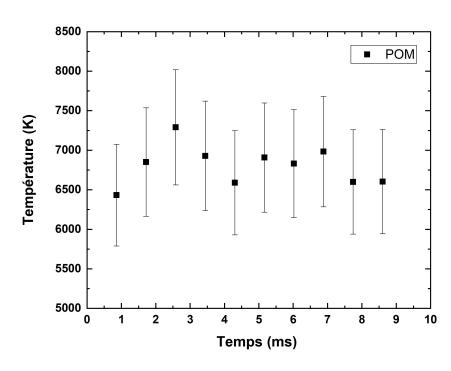

Acquisition (t=6ms)

- → Paroi PTFE + plexi
- → Rapport FC vs Fluor : 3:1
- ⇒ Il se peut que ce rapport ne soit pas suffisant pour améliorer de manière significative le signal reçu par imagerie rapide (λ = 687 nm $\Delta\lambda$ = 4nm)

Raie du Fer

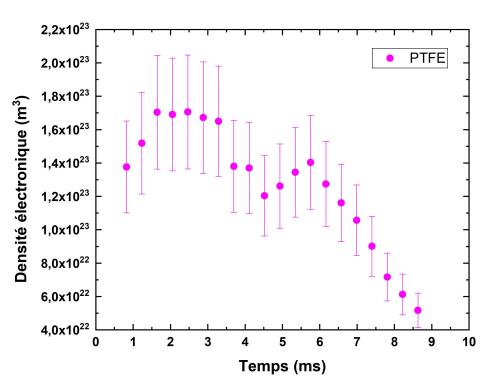
→ Présence d'un spectre riche en raie du Fe.

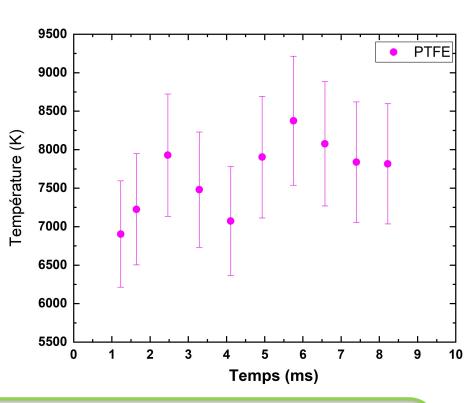



→ Raies dont les niveaux émetteurs sont séparées par plus de 3 eV.

Spectroscopie

POM-C




- → Densité électronique élevée / Température faible
- → Variation du ne / T à t=4ms, passage du couteau

Spectroscopie

PTFE

- → Même tendance pour le PTFE
- → Comparaison mesures n_e T / Calcul composition

Conclusions et perspectives

- → Mise en place et prise en main de l'interrupteur MT
- → 3 matériaux testés (POM, PTFE et PA66)
- → Ablation des parois plastiques localisée autour du pion
- → Ablation du couteau identique pour les 3 matériaux
- → L'utilisation des filtres interférentiels n'a pas apporté une information supplémentaire.
- → Spectroscopie : Les quelques mesures effectuées semblent indiquer que nous sommes en présence d'un milieu très riche en vapeur.
 - → Finaliser mesures avec le dernier matériau UF Formaldéhyde
 - → Finaliser l'exploitation des vidéos (face latérale)
 - → Mesures spectroscopiques