Procédés d'Ablation Laser pour la synthèse de Films minces, Agrégats et Composites Nanostructurés : *de l'élaboration du matériau à son introduction dans des composants électroniques*

<u>C. Champeaux</u>, F. Dumas-Bouchiat^a, P. Dutheil, S. Rives^b, J.C. Orlianges, A. Catherinot, J. Givernaud^{*}, and A. Crunteanu^{*}

SPCTS UMR 6638 and *XLIM UMR 6172 – Université de Limoges/CNRS 12 rue Atlantis - 87068 LIMOGES Cedex, France

eorinne.champeaux@unilim.fr

^a Permanent address : Néel Institute, CNRS UPR 2940 - Grenoble, France. ^b Permanent address : Montpellier University, France.

Thin films, nanoscale clusters and nanostructured materials

- ✓ great interest for basic science and applications because of their peculiar physical and chemical properties, different and enhanced from those of isolated atoms and of bulk materials.
- ✓ applications in electronics, optics, ... domains

Solution Systems Development of new integrated performant communication systems

✓ good quality thin-films with tunable properties, new functionalities ("smart" materials)

♦ laser ablation processes ⇒ good solutions

Specificities of laser ablation

Well known for thin films deposition ⇒ Pulsed Laser Deposition (PLD)

 \clubsuit good quality material ; films with typical thickness < 2 μ m

Surface contamination by condensed particles
Non-uniformity of deposition on "large" dimensions

Solutions : judicious PLD parameters, displacement of the substrate with regard to the plasma

➡ Growth of in-flight aggregates leading to nanosize clusters

Laser ablation for nanomaterials synthesis:

If the ablation plume is strongly quenched
 ✤ synthesis of nanosized particles in the vapor.

•Quenching can be induced by:

- ✓ a cold gas \Rightarrow Low Energy Cluster Beam Deposition (LECBD)
- ✓ a liquid \Rightarrow synthesis of colloids by Laser Ablation in Liquid (LAL).

Laser ablation processes:

Elaboration of thin films with optimized properties

Correlation process – material properties

Integration in electronic or optic components

From materials to devices

Exploitation of process potentialities

Doping, Multilayers, nanosize clusters

Innovative new materials

Control of deposition parameters Studies of ablation mechanisms

Thin Films

Nano materials

- ✓ Thin films by PLD for telecom applications
 - Development of "smart" material (with phase-transition) for RF system
- ✓ Doped thin films
- Nanostructured thin films by conventionnal PLD
 AIN
 - DLC (deposited at room temperature)
- Synthesis of clusters and nanostructured thin films by PLD coupled with a free cluster generator (PLD – LECBD)
- ✓ Synthesis of colloids by Laser Ablation in Liquid
 - Conclusions and perspectives

Process control

Ø

- ✓ Laser-matter interaction
 - ✓ Ejection of the matter : plasma
 - \checkmark Transport of species from the target to the substrate
 - \checkmark Growth of the film

All dependant steps

Parameters : Target, Substrate Fluence Gas, Pressure Temperature

Laser ablation processes:

Elaboration of thin films with optimized properties

Correlation process – material properties

Integration in electronic or optic components

From materials to devices

'Smart' material VO₂

Development of "smart" material (for example with phase-transition)

- \checkmark Mott transition materials as vanadium dioxide VO₂
- Reversible Semiconductor-Metal transition
 - Semi-conductor state : <u>highly resistive</u>, Gap~1 eV at room temperature, Monoclinic phase
 - Metallic state : <u>low-resistivity</u> for temperatures higher than <u>68°C</u> (~340 K) Tetragonal phase
- $\stackrel{\text{thin film VO}_2}{\to}$

Film activation induced :

thermally electrically (Joule effect or charge injection) optically - obtain faster transition down to 100 fs !!

Vanadium dioxide synthesis

Pb : about 15 stable phases for the V-O system ! ($V_4O - V_2O_5$) \Rightarrow narrow conditions range to realize VO_2

PLD parameters

Target: Vanadium (metallic)Substrate: R/ C-cut sapphire, Silicon oxide, Fused silicaLaser: KrF, 248 nm, 25 ns at fluence 3.5 J/cm²Temperature: 500 °COxygen pressure during deposition : 2.2×10² mbarNo post-annealing of the obtained films

AFM investigations

XRD: (0, 20) at T_{room}

Vanadium dioxide VO₂

Material with Semiconductor – Metal (MIT) transition at 68 °C \checkmark

optical and electrical switch Ø

Applied Physics Letters, 2007

Vanadium dioxide VO₂

Material with Semiconductor – Metal (MIT) transition at 68 °C \checkmark

optical and electrical switch Ø

Applied Physics Letters, 2007

100-nm thick VO2 on AI2O3 (R)

✓ RF switches

On different types of substrates (SiO2/Si, fused silica, C/Rcut sapphire)

Mat. Res. Soc. Symp. Proc, 2009

Tunable 4-pole band stop filter based on SC-MT of VO₂ thin films

Measures Electrical activation S21 - Transmission (dB)

- Microstrip transmission line coupled with 4 U-

14

4-pole band stop filter: Tunability

Electrical activation of 2, 3 (1, 4) resonators leads to a displacement of the central frequency of the filter to lower (higher) frequencies

b Tunability demonstrated

What about the switching time ?

2 terminal device

Scommutation time : 300 ns

Comparison to others RF switches

➤ semi-conductors

➤ MEMS

➢ Switch VO₂

<u>advantages</u>

Switching time (1-100 ns) Reliability (10¹² cycles) Cost (0.5-8 €)

Insertion losses (0,05-0,2 dB) Parasite capacity (1-10 fF) Large band (DC-120 GHz) Reliability (10¹² cycles)

large band (DC to 35 GHz) Simple fabrication (2 levels) Switching time (~ 300 ns)

drawbracks

Insertion losses (0.3-2.5 dB) Band (< 20 GHz) Consumption (0.05-100 mW)

Cost (8-20 €) Encapsulation necessary

consumption (> 50 mW) (activation by current) sensibles to temperature

Nano materials

Thin films by PLD for telecom applications Development of "smart" material (with phase-transition) for RF system

Doped thin films

- ✓ Nanostructured thin films by conventionnal PLD
 - AIN - DLC

(deposited at room temperature)

✓ Synthesis of clusters and nanostructured thin films by PLD coupled with a free cluster generator (PLD – LECBD)

✓ Synthesis of colloids by Laser Ablation in Liquid

Conclusions and perspectives

✓ Specificity of PLD :

Mean 'thickness' per laser pulse 0.01 – 1 Å

Source of laser pulses

✤ Novel materials

Development of 'doped' thin films

At room temperature

Metal doped carbon PLD thin films
 loop: n shots on carbon target, 1 shot on metal target

Strong change in the resistivity

'control' of resistivity
 8 - 13 orders in magnitude

Û

- fabrication of 'calibrated' resistances
 - to annihilate the signal losses through the biasing lines of MEMS

- heating micro-resistances (VO₂ transition)

Development of 'doped' thin films

Deposition at 600°C Gold-doped VO₂ PLD thin films \checkmark loop: n shots on Vanadium target, 1 to 5 shots on gold target 1 i lutulul 3e5 XRD: (0, 20) VO2 M (020) 2e5 (O2 M (040) Au (111) Log (Counts) (200) Au (220) 1000 = 100 70 21 2-Theta - Scale

Scrystallization of Au and VO₂

✓ Gold-doped VO₂ PLD thin films

loop: n shots on Vanadium target, 1 shot on gold target

Sold nanoparticles (SPR)

Deposition at 600°C

Surface Plasmon Resonance tunability of Au-NP in VO₂ matrix (blueshift of SPR during SC-M transition of VO₂)

Nano materials

- ✓ Thin films by PLD for telecom applications
 - Development of "smart" material (with phase-transition) for RF system
- ✓ Doped thin films
- ✓ Nanostructured thin films by conventionnal PLD
 - AIN - DLC (deposited at room temperature)
- ✓ Synthesis of clusters and nanostructured thin films by PLD coupled with a free cluster generator (PLD LECBD)
- ✓ Synthesis of colloids by Laser Ablation in Liquid
- Conclusions and perspectives

Nanostructeured materials by conventionnal PLD

HR TEM image and SAED

of ns PLD AIN film deposited at room temperature, pressure 0.1 Pa N₂ fluence 6J.cm⁻²

Nanocomposite thin film :

- ✓ AIN nanoparticles \approx 7 nm in size, embedded in amorphous matrix
- ✓ hcp crystallized AIN nanoparticles
- ✓ piezoelectric response : $d_{33} = 2 3.5 \text{ pm}.\text{V}^{-1}$ / 5-7 pm.V⁻¹ (bulk)

Thin file

Rotatino

target

Laser Beam

GIXRD (grazing incidence XRD)

Nanostructeured materials by conventionnal PLD

Diamond like Carbon thin films

PLD at room temperature of carbon target

- ✓ ta-C with high sp³ bonding proportion (80%)
- ✓ sp² clusters in sp³ matrix

✓ Properties:

Hardness : 50 - 60 GPa / 100 GPa diamond Young Modulus : 500 - 600 GPa / 1000 GPa diamond Dielectric constant : $\varepsilon = 5.7 \pm 0.2$ / 5,67 diamond

Electrical conduction mechanism : Variable Range Hopping between sp² clusters

HR TEM image of ns PLD ta-C film deposited at room temperature

Thin Films

Nano materials

- ✓ Thin films by PLD for telecom applications
 - Development of "smart" material (with phase-transition) for RF system
- ✓ Doped thin films
- Nanostructured thin films by conventionnal PLD

 AIN
 DLC
 (deposited at room temperature)
- Synthesis of clusters and nanostructured thin films by PLD coupled with a free cluster generator (PLD – LECBD)
- ✓ Synthesis of colloids by Laser Ablation in Liquid
- Conclusions and perspectives

Exploiting the potentialities of laser ablation process Synthesis of nanosized particles

- \checkmark Quenching induced by a cold gas
 - ⇒ Low Energy Cluster Beam Deposition (LECBD)

Homogenous Nucleation in vapor phase

Thermodynamic approach

S = P/Ps

P : partial pressure *Ps* : vapor pressure at *Ts*, temperature of gas/condensed phase interface

P/Ps < 1: vaporization from the condensed phase P/Ps > 1: condensation from the gas

Nucleation required Supersaturation S = *P* / *Ps* > 1

Laser ablation : adiabatic expansion of the vapor
 in vacuum : no supersaturation

• in gas (high pressure, high thermal conductibility): He

and

stop the cluster growth
 expansion of mixture of gas and clusters

♦ specific set up

1 : supersaturation2 : nucleation and increase of T (2-3)

Principle of Cluster Generator

Overview of the PLD-LECBD set-up

Conventional PLD set-up coupled with a free cluster generator

Ø

Stacking of 'Nanoclusters' by LECBD

Co nanoclusters by LECBD

• TEM characterization 20 nm-stack on a Copper grid

- Individualized quasi-spherical clusters.
- Monodisperse size

3.6 nm average size Co fcc clusters

Co nanoclusters stacked by LECBD: magnetic properties

Magnetic force microscopy

- Multi magnetic domains assembling.
- Magnetic domains > nanoparticles size

- Ferromagnetic behavior while a single cluster is superparamagnetic
- ⇒ Clusters magnetic coupling.

Vibrating Sample Magnetometry

Crystalline entity \approx 3.6 nm, magnetic entity \approx 9.2 nm

Collaboration : D. Givord, Institut Néel, Grenoble, France

J. Appl. Phys., 2006

Co nanoclusters by LECBD

Correlation experiment - simulation

HRTEM of a **isolated aggregate**

Simulation by Molecular Dynamics

- Interatomic and interplanar distances calculated from the average nearest-neighbor distance of each atom in the cluster

Solution Soluti Solution Solution Solution Solution Solution Solution Solut

- Size ~ 3 nm, fcc(111) planes
- Interplanar Distance : 1.92 Å \pm 5%
 - 2.05 Å between (111) planes of bulk fcc Co

Scontraction of lattice parameter

Collaboration : R. Ferrando Univ. Gênes (Italie)

Phys Rev B, 2008

Co nanoclusters embedded in Al₂O₃ matrix by LECBD/PLD

Tension (V)

Highly dispersed spherical clusters in the amorphous Al₂O₃ matrix(thickness 200 nm)

- Mean cluster size: 2.3 nm
- Electronic diffraction: in flight structure kept: Co fcc well crystallised clusters.

Conduction mechanisms (non ohmic) described by

Trap-Charge-Limited Space-Charge-Limited Conductivity (I=Vⁿ)

Electrical characterizations

•Permittivity: Evolution of ε_r with doping.

Increase of doping \Rightarrow increase of relative permittivity ε_r

Co, Cu, Ag nanoclusters in Al₂O₃ Optical characterizations

- \clubsuit Metallic behavior of Ag and Cu clusters \Rightarrow no oxides: confirmed by TEM.
- Size:

•Silver: 394 nm (3.1 eV), 4.5 nm optical diameter (TDLDA modeling)

•Copper: 572 nm (2.2 eV), 2.6 nm optical diameter (Doyle approach)

•Cobalt: extinction in U.V

Thin Films

Nano materials

- ✓ Thin films by PLD for telecom applications
 - Development of "smart" material (with phase-transition) for RF system
- ✓ Doped thin films
- ✓ Nanostructured thin films by conventionnal PLD
 - AIN - DLC

(deposited at room temperature)

✓ Synthesis of clusters and nanostructured thin films by PLD coupled with a free cluster generator (PLD – LECBD)

✓ Synthesis of colloids by Laser Ablation in Liquid

Exploiting the potentialities of laser ablation process Synthesis of nanosized particles

- \checkmark Quenching induced by a liquid
 - ⇒ Synthesis of nanocolloids by Laser Ablation in Liquid (LAL)

✓ Principle

- Ablation of target in liquid
- 'quenching' of the plasma plume

growth of nano-clusters at room temperature and atmospheric pressure

Service Servic

- \bullet Nd:YAG laser at $2\omega,\,532$ nm, pulse duration: 7 ns, 10Hz,
- fluence: 1.5 6J/cm²
- Cobalt target ablation under 5 mm of ethanol or water.

Co nanocolloids by LAL

CoO fcc, non magnetic

Co nanocolloids by LAL

LAL in ethanol

TEM

- Spherical particles: 2 60 nm
- Pentagonal or necklace like organization
 - ✤ magnetic behavior
- Diffraction pattern blurred: high size dispersion or/and several structures.
- Direct interatomic distances measurement with HRTEM:
 ♥Co hcp (100) and Co₃O₄ fcc (222)

Û

Co and Co₃O₄ magnetic

High influence of the quencher liquid over the characteristics of the clusters

HRTEM

- Shoulder at 280 nm
 - ⇔ oxidation Co₃O₄

Absorbance

LAL: Silica coating

•Co colloids synthesized by LAL in ethanol coated with Silica by a Stöber method: Alkyl-silicates (TEOS) hydrolysis → silicic acid condensation in water/ethanol solution + ammoniac as morphologic catalyst.

Silica balls homogeneous:
diameter ≈ 400 nm
Self organized.

- Balls core: 1 to 20 nanoparticles, few without core and monoparticular due to lack of dispersion in the suspension.
- Core nanoparticles agglomerated in necklaces or in geometrical forms (pentagon)
 - Symmetric behavior

Conclusion

Potentialities of laser ablation

- Introduction of "new" materials in RF devices

✓ Laser ablation processes for nanostructure synthesis:

•LECBD/PLD for nanoclusters stacks and nanoclusters-embedded thin films with interesting optical and electrical properties

•LAL

 \rightarrow Applications in opto and micro electronics.

On going work

Development of association of more complex materials with different functionnalities :

- Multilayers
- Nanocomposites by LECBD for RF and optic components
- Nanopowders by Laser Ablation in Liquid for ceramic processes (stereolithography, ink-print...)

 Properties at nanometric size of smart nanostructured composites
 Université de Limoges

Thank you for your attention !

