

Projet ASTRAW –

Arc stabilisé dans l'argon pour la mesure des probabilités de transition de W I et W II

Arnaud BULTEL, Aurélien FAVRE UMR CNRS 6614 CORIA

Djamel Benredjem

W.-Ü Lydia TCHANG-BRILLET

Jean-François WYART

Philippe TEULET

Ioan SCHNEIDER

UMR CNRS 9188 LAC

UMR CNRS 8112 LERMA

UMR CNRS 9188 LAC

UMR CNRS 5213 LAPLACE

UMR CNRS 6294 LOMC

3. Etat d'avancement

4. Perspectives

- 1. Contexte Problématique
- 2. Expérience ASTRAW
- 3. Etat d'avancement
- 4. Perspectives

3. Etat d'avancement
 4. Perspectives

- 1. Contexte Problématique
- 2. Expérience ASTRAW
- 3. Etat d'avancement
- 4. Perspectives

1. Contexte – Problématique

2. Expérience ASTRAW

3. Etat d'avancement
 4. Perspectives

Réaction de fusion $^{2}D + ^{3}T \rightarrow ^{4}He + ^{1}n$

 ^{3}T radioactif

³T surveillé

Implantation de ${}^{3}T$ ainsi que ${}^{2}D$ et ${}^{14}N$, ${}^{16}O$... (impuretés) dans le divertor en W

Mesure *in situ* par plasma induit par laser LIBS

3. Etat d'avancement

4. Perspectives

Analyse de composition par Laser-Induced Breakdown Spectroscopy – LIBS

Fusion

Evaporation – explosion de phase

Ionisation (MPI & IB)

Plasma (100 bar, 10000 K)

Onde de choc

Analyse spectroscopique

- $0 < t < 100 \ ns$ intense fond continu
- t < 500 ns fort déséquilibre
- t > 500 ns déséquilibre modéré (ray. atom. et moléc.)
- \Rightarrow Exploitation diagrammes de Saha-Boltzmann

Visio – 16 mars 2022 – A. BULTEL

CORIA LIBS platform

Czerny-Turner Spectrometer Focal length f = 0.32 mAperture f / 4.6Spectral resolution $\approx 0.08 nm$ at 700 nm

Pi-MAX 4 ICCD Camera 110 nm – 400 nm or 400 nm – 800 nm Minimum gate 1 ns

Pi-MAX 2/ICCD Camera 400 nm - 800 nm Minimum gate 1 ns

Ebert-Fastie Spectrometer Focal length f = 2 mAperture f / 15Spectral resolution $\approx 0.05 nm$ at 700 nm

Pumping system Primary + turbomolecular pumps Pumping speed 5 m³ h⁻¹

For 10 mJ at **532 nm** :

- f = 50 cm Fluence $F \approx 10 \text{ J cm}^{-2}$ (center) Irradiance $\phi \approx 10^{12} \text{ W cm}^{-2}$ (center) Waist diameter $\approx 250 \text{ }\mu\text{m}$
- f = 5 cm Fluence $F \approx 1000$ J cm⁻² (center) Irradiance $\phi \approx 10^{14}$ W cm⁻² (center) Waist diameter ≈ 25 μ m

Vacuum (xyz)-stage samples holder 20 × 20 × 20 mm³

Vacuum chamber Ultimate pressure 0.3 Pa Equipped with Brewster windows

> Laser pulse 532 nm

Laser source EKSPLA PL-2251 (10 Hz, 30 ps, Ø6 mm, 100:1, 0.5 mrad) 355 nm – 14 mJ – Vert. Polar. 532 nm – 20 mJ – Horiz. Polar. 1064 nm – 34 mJ – Vert. Polar.

Laser source QUANTA-RAY Spectra Pro 250 (10 Hz, 2 – 10 ns, ∅10 mm, 0.5 mrad) 355 nm – 420 mJ 532 nm – 800 mJ 1064 nm – 1400 mJ

2. Expérience ASTRAW

3. Etat d'avancement
 4. Perspectives

A. Favre, M. Lesage, V. Morel, A. Bultel, P. Boubert International Workshop on LIBS, Dec. 1-2, 2020, Szeged, Hungary

2. Expérience ASTRAW

3. Etat d'avancement

4. Perspectives

- 1. Contexte Problématique
- 2. Expérience ASTRAW
- 3. Etat d'avancement
- 4. Perspectives

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

Allure des cristaux de W(CO)₆

Pression de vapeur saturante en fonction de la température M. Kocan *et al.* Rev. Sci. Instrum. **84** (2013) 073501

Emission plasma à l'équilibre (opt. mince)

Visio – 16 mars 2022 – A. BULTEL

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

- 1. Contexte Problématique
- 2. Expérience ASTRAW
- 3. Etat d'avancement
- 4. Perspectives

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3 étapes

- 1. Calculs de composition à l'équilibre
- 2. Analyse de l'équilibre thermodynamique de l'arc stabilisé sans W(CO)₆ injecté...

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3 étapes

- 1. Calculs de composition à l'équilibre
- 2. Analyse de l'équilibre thermodynamique de l'arc stabilisé sans W(CO)₆ injecté...

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3 étapes

- 1. Calculs de composition à l'équilibre
- 2. Analyse de l'équilibre thermodynamique de l'arc stabilisé sans W(CO)₆ injecté...

Visio - 16 mars 2022 -

3. Etat d'avancement

4. Perspectives

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

3 étapes

- 1. Calculs de composition à l'équilibre
- 2. Analyse de l'équilibre thermodynamique de l'arc stabilisé sans W(CO)₆ injecté
- 3. Analyse spectroscopique de l'émission de W avec W(CO)₆ injecté...
- Instabilités plus prononcées
- Compensation en puissance
- Dépôt W sur les parties froides
- Raies de W et W⁺ observables
- Equilibre thermodynamique W/Ar

Visio – 16 mars 2022 – A. BULTEL

Arc STabilisé pour la mesure du RAyonnement de W - ASTRAW

BILAN - PERSPECTIVES

- 1. Calculs de composition à l'équilibre opérationnels
- 2. Arc stabilisé opérationnel
- 3. Système d'injection opérationnel
- 4. Analyse de l'équilibre thermodynamique de l'arc stabilisé sans W(CO)₆ terminée
- 5. Analyse spectroscopique de l'émission de W avec W(CO)₆ quasiment terminée
- 6. Détermination de coefficients d'Einstein d'émission spontanée
- 7. Détermination des paramètres d'élargissement Stark

REMERCIEMENTS

Réalisation de la mesure des A_{ki} pour WI et WII

- **Etape 1**. Réalisation de la chambre de sublimation et de sa jonction avec la source plasma *Travail conjoint bureau d'études CORIA – atelier de fabrication*
- **Etape 2**. Fin des calculs de composition à l'équilibre *Travail théorique à partir des bases de données CORIA*
- **Etape 3**. Etude des spectres émis par la source plasma Détermination des coefficients d'Einstein de WI et WII

Moyens humains

Arnaud BULTEL	MdC HdR Université de Rouen (chef de projet)
Aurélien Favre	Doctorant Région Normandie
Benjamin QUEVREUX	Ingénieur d'études CNRS (bureau d'études)
Philippe TOUTAIN	Assistant Ingénieur CNRS (réalisation chambre de sublimation et raccordement
	source plasma)
Gilles GODARD	Ingénieur de recherche (spectroscopie, caméras ICCD)

Etape	Durée
1. Réalisation de la chambre de sublimation	Septembre 2016 $ ightarrow$ Mars 2017
2. Calculs de composition à l'équilibre	Septembre 2016 $ ightarrow$ Mars 2017
3. Détermination des coefficients d'Einstein de WI et WII	Avril 2017 \rightarrow Mars 2018

Réalisation de la mesure des A_{ki} pour WI et WII

Poste budgétaire	Coût
Rubans chauffants	400 €
Boîtier thermorégulation chambre sublimation	300€
Plaques et tubes aluminium, raccords et joints haute température	1500€
Poreux en bronze	200€
Flacon de 250 g de W(CO) ₆ chez Fisher Scientific	650€
Total	3050 €

Merci de votre attention... et de votre soutien !